煤燃烧过程生成的NOx是造成大气氮氧化物污染的主要来源之一.据统计,电站锅炉排放的NOx约占煤燃烧NOx排放总量的40%以上.煤燃烧产生的NOx中90%以上为NO,而NO2、N2O等气体含量不到总量的10%[1].迄今为止,世界各国已开发了多种燃煤烟气NOx*理技术,其中选择性催化还原法(SCR)以其技术成熟、脱硝效率高等优点在大型燃煤电厂获得了广泛应用.
在SCR烟气脱硝系统(以下简称脱硝系统)长期运行过程中,催化剂的催化效果会因为各种物理化学作用(中毒、磨损、热烧结、堵塞、沾污等)而减弱,甚至失效,这会对脱硝效果和成本造成*大的影响.催化剂的失活速率约为每运行1000h,脱硝效率降低0.7%[2],一般3~5年就需要更换[3].
不同程度的磨损对催化剂造成的影响有所不同,轻微磨损可以促进催化剂表面的更新,使催化剂保持良好活性,但是过度磨损会使催化剂表面活性组分过快流失,从而降低活性组分的寿命,并且还会使催化剂变薄,造成催化剂断裂,损害其下游的设备.为此,本文采用冷态试验与数值模拟相结合的方式,分析了脱硝系统上层催化剂在横梁两侧区域磨损比较严重的原因.